29 oct 2018 , 09:14

Cuando la Tierra se volvió líquida

Cómo fue el colosal impacto que acabó con los dinosaurios.

Es difícil imaginar cómo miles de millones de toneladas de roca pueden de pronto salpicar como un líquido, pero es exactamente lo que ocurrió cuando un asteroide impactó la Tierra hace 66 millones de años.

Así lo aseguran científicos en Estados Unidos que lograron reconstruir en forma detallada cada paso del evento colosal que acabó con los dinosaurios.

Muestras obtenidas del cráter del impacto permitieron concluir que las rocas sufrieron un proceso de "fluidización".

En otras palabras, el material pulverizado comenzó a comportarse como una sustancia similar al agua.

Cráter de 200 km

Modelos informáticos permitieron determinar qué sucedería si un objeto de piedra de 12 km de ancho proveniente del espacio impactara la superficie de la Tierra.

Inicialmente se crearía en forma casi instantánea un espacio cóncavo de unos 30 km de profundidad y 100 km de ancho.

La inestabilidad del terreno causaría posteriormente el colapso hacia adentro de los márgenes del cráter. Y ese colapso generaría a su vez una reacción de rebote desde el fondo del cráter hasta alturas superiores al Himalaya.

 

 

Tubo de roca obtenido tras perforar el lecho del Golfo de MéxicoDerechos de autor de la imagenDSMITH@ECORD
Image caption Los científicos lograron perforar las rocas para obtener muestras a más de 1.300 metros de profundidad bajo el fondo del mar.

 

 

Esos movimientos gigantescos en determinado momento se estabilizarían, y lo que permanecería sería un cráter de unos 200 km de ancho y 1 km de profundidad.

Ése cráter es precisamente el que se encuentra ahora enterrado bajo sedimentos en el Golfo de México, cerca del puerto de Chicxulub.

Como en la Luna

El modelo se llama "modelo de colapso dinámico de formación de un cráter" y el impacto que describe sólo es posible si las rocas, por un período breve, pierden su solidez y fluyen sin fricción.

El nuevo estudio presenta pruebas de ese proceso de fluidización, que se basan en material por la perforación de rocas en un anillo de colinas en el centro de la depresión de Chicxulub.

"Lo que encontramos al examinar el tubo de material de roca es que ésta se había fragmentado", dijo a la BBC Ulrich Riller, investigador de la Universidad de Hamburgo, en Alemania.

 

 

CenoteDerechos de autor de la imagenGETTY IMAGES
Image caption Las depresiones geológicas inundadas conocidas como cenotes se formaron en roca caliza que se encuentra sobre el sitio del cráter.

 

 

"La roca fue aplastada y quebrada en fragmentos diminutos que inicialmente fueron de milímetros. Esto produjo el comportamiento semejante a un fluido que explica la base plana del cráter, algo que caracteriza a Chicxulub y otros casos de grandes impactos, como los que vemos en la Luna".

La fluidización no es un proceso de derretimiento de roca, sino de fragmentación de la misma por inmensas fuerzas de vibración, explicó Sean Gulick, de la Universidad de Texas en Austin, en Estados Unidos, y otro de los líderes del equipo de perforación.

"Es un efecto de presión, un daño mecánico. La cantidad de energía que pasa por estas rocas es equivalente a terremotos de magnitud 10 u 11. Se estima que todo el impacto tuvo una energía equivalente a 10.000 millones de bombas de Hiroshima".

Luego de su fragmentación y fluidización, las rocas recuperaron su solidez para formar el anillo del cráter. Ese retorno a la solidez puede verse en las muestras obtenidas.

"Se manifiesta en discontinuidades que muestran cómo las rocas se deslizan respecto de otras rocas. Estas estructuras planas son evidencia de que la roca debe haber recuperado fuerza hacia el final de la formación del cráter", señaló Riller.


Cráter de Chicxulub - El impacto que cambió la vida en la Tierra

 

 

Sitio del cráterDerechos de autor de la imagenNASA
Image caption El arco blanco muestra el margen externo del cráter bajo la península de Yucatán, pero al arco interno se accede mejor por el mar. El punto rojo indica el sitio de perforación donde se obtuvo la muestra.

 

 

  • Un objeto de 12 km de ancho generó un hoyo en la corteza terrestres de 100 km de diámetro y 30 km de profundidad
  • El hoyo colapsó dejando finalmente un cráter de 200 km de ancho
  • El centro del cráter rebotó y colapsó nuevamente causando un anillo interno
  • Gran parte del cráter se encuentra en el mar, bajo 600 m de sedimentos
  • En tierra, el cráter está cubierto por roca caliza, pero su margen puede trazarse a lo largo de un arco de depresiones geológicas inundadas

"No solamente en nuestro Sistema Solar"

La investigación no solo arroja nueva luz sobre algunos de los días más catastróficos en la historia de la Tierra y sobre la extinción masiva que produjo el impacto. También contribuye al estudio de grandes cráteres en otros cuerpos planetarios.

 

 

Cráter de SchrodingerDerechos de autor de la imagenNASA SCIENTIFIC VISUALIZATION STUDIO
Image caption El cráter Schrödinger en la superficie de la Luna, con su anillos internos, se formó en un proceso similar al que tuvo lugar en el cráter de Chicxulub

 

 

"Estamos explicando un proceso fundamental que puede ocurrir en cualquier cuerpo rocoso", afirmó Gulick.

"Por primera vez tenemos muestras de rocas que evidencian el proceso de deformación que posibilitó que se comportaran temporalmente como un líquido antes de volver a ser rocas, sin derretirse".

"Ese proceso resulta de la superposición de mecanismos de deformación. Y es un proceso fundamental que puede cambiar la superficie de planetas, no solamente en nuestro Sistema Solar, sino probablemente en otros Sistemas Solares".

Riller y Gulick integraron la llamada Expedición 364 de Perforación (Expedition 364 drilling project), que tuvo lugar en abril y mayo de 2016.

El nuevo estudio sobre fluidización en el cráter de Chicxulub fue publicado en la revista Nature.

Puedes ver el estudio en este vínculo.

Noticias
Recomendadas